
COP 4600: Intro To OS (Multiprocessor Scheduling) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2013

Introduction To Operating Systems

Multiprocessor Scheduling

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4600/sum2013

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 2 © Dr. Mark Llewellyn

Scheduling In A Multiprocessor System

• When a computer system contains more than one processor,

several new issues are introduced into the design of

scheduling protocols.

• Load sharing becomes an issue for the scheduler.

• As with uniprocessor scheduling protocols, there is no one

best protocol that will suffice for all situations.

• For the most part we will only be concerned with

homogeneous systems, in which the processors are identical

in terms of their functionality.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 3 © Dr. Mark Llewellyn

Classifications of Multiprocessor Systems

• Loosely coupled, distributed multiprocessors, or clusters

– Fairly autonomous systems.

– Each processor has its own memory and I/O channels

• Functionally specialized processors

– Typically, specialized processors are controlled by a master general-

purpose processor and provide services to it. An example would be

an I/O processor.

• Tightly coupled multiprocessing

– Consists of a set of processors that share a common main memory

and are under the integrated control of an operating system.

– We’ll be most concerned with this group.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 4 © Dr. Mark Llewellyn

Multiprocessor Systems

Interconnection Network

P P P

Memory

disk

Memory Memory

disk disk

Shared Nothing

(Loosely Coupled)

P P P

Interconnection Network

Global Shared Memory

disk disk disk

Shared Memory

(Tightly Coupled)

Memory Memory Memory

P P P

Interconnection Network

disk disk disk

Shared Disk

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 5 © Dr. Mark Llewellyn

Multiprocessor Systems

• The basic problem with the shared-memory and shared-disk architectures

is interference.

• As more CPUs are added, existing CPUs are slowed down because of the

increased contention for memory accesses and network bandwidth.

• It has been shown that:

– An average of 1% slowdown per additional CPU limits the maximum

speed-up to a factor of 37.

– Adding additional CPUs actually slows down the system.

– A system with 1000 CPUs is only 4% as effective as a single CPU.

• These observations motivated the development of the shared-nothing

architectures for parallel systems. These systems are particularly useful

for database systems.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 6 © Dr. Mark Llewellyn

Multiprocessor Systems

• Linear speed-up occurs when the time required by an

operation decreases in proportion to the increase in the

number of CPUs and disks.

• Linear scale-up occurs when the performance level is

sustained if the number of CPUs and disks are increased in

proportion to the amount of data.

• As a result, ever-more-powerful parallel systems can be

constructed by taking advantage of the rapidly improving

performance for single-CPU systems and connecting as

many CPUs as desired.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 7 © Dr. Mark Llewellyn

Speed-up vs. Scale-Up

of CPUs # of CPUs, database

size

#
 o

f

tr
a
n

s
a
c
ti
o
n

s
/s

e
c
o
n

d

#
 o

f

tr
a

n
s
a

c
ti
o

n
s
/s

e
c
o

n
d

Linear

speed-up

(ideal)

Sublinear

speed-up

Linear scale-

up (ideal)

Sublinear

scale-up

Speed-up Scale-up

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 8 © Dr. Mark Llewellyn

Granularity

• A good metric for characterizing multiprocessors and placing

then in context with other architectures is to consider the

synchronization granularity, or frequency of synchronization,

between processes in a system.

• Five categories of parallelism that differ in the degree of

granularity can be defined:

1. Independent parallelism

2. Very coarse granularity

3. Coarse granularity

4. Medium granularity

5. Fine granularity

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 9 © Dr. Mark Llewellyn

Independent Parallelism

• With independent parallelism there is no explicit

synchronization among processes.

• Each process represents a separate, independent application or

job.

• This type of parallelism is typical of a time-sharing system.

• The multiprocessor provides the same service as a

multiprogrammed uniprocessor, however, because more than

one processor is available, average response times to the user

tend to be less.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 10 © Dr. Mark Llewellyn

Coarse and Very Coarse-Grained Parallelism

• With coarse and very coarse grained parallelism, there is

synchronization among processes, but at a very gross level.

• This type of situation is easily handled as a set of concurrent processes

running on a multi-programmed uni-processor and can be supported

on a multiprocessor with little or no change to user software.

• In general, any collection of concurrent processes that need to

communicate or synchronize can benefit from the use of a

multiprocessor architecture.

• In the case of very infrequent interaction among the processes, a

distributed system can provide good support. However, if the

interaction is somewhat more frequent, then the overhead of

communication across the network may negate some of the potential

speedup. In that case, the multiprocessor organization provides the

most effective support.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 11 © Dr. Mark Llewellyn

Medium-Grained Parallelism

• A single application can be effectively implemented as a collection of

threads within a single process.

• In this case, the potential parallelism of an application must be explicitly

specified by the programmer. Typically, there will need to be a rather

high degree of coordination and interaction among the threads of an

application, leading to a medium-grain level of synchronization.

• Whereas, independent, very-coarse, and coarse grain parallelism can be

supported on either a multi-programmed uni-processor or a

multiprocessor with little or nor impact on the scheduling function, we’ll

need to more carefully consider scheduling in the context of threads.

• Because the various threads of an application interact so frequently,

scheduling decisions concerning one thread may affect the performance

of the entire application.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 12 © Dr. Mark Llewellyn

Fine-Grained Parallelism

• Fine-grained parallelism represents a much more complex use of

parallelism than is found in the use of threads.

• Although much work has been done on highly parallel

applications, this is so far a specialized and fragmented area, with

many different approaches.

• We will not be considering fine-grained parallelism any further.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 13 © Dr. Mark Llewellyn

Synchronization Granularity and Processes

Granularity Description
Synchronization Interval

(Instructions)

Fine
Parallelism inherent in a single

instruction stream
< 20

Medium

Parallel processing or

multitasking within a single

application

20-200

Coarse

Multiprocessing of concurrent

processes in a

multiprogramming environment

200-2000

Very Coarse

Distributed processing across

network nodes to form a single

computing environment

2000- 106

Independent Multiple unrelated processes N/A

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 14 © Dr. Mark Llewellyn

Design Issues For Multiprocessor Scheduling

• Scheduling on a multiprocessor involves three interrelated

issues:

1. The assignment of processes to processors

2. The use of multiprogramming on individual processors

3. The actual dispatching of a process

• Looking at these three issues, it is important to keep in mind

that the approach taken will depend, in general, on the degree

of granularity of the applications and on the number of

processors available.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 15 © Dr. Mark Llewellyn

1: Assignment of Processes to Processors

• If we assume that the architecture of the multiprocessor

is uniform, in the sense that no processor has a

particular physical advantage with respect to access to

main memory or I/O devices, then the simplest

scheduling protocol is to treat processors as a pooled

resource and assign processes to processors on demand.

• The question then arises as to whether the assignment

should be static or dynamic.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 16 © Dr. Mark Llewellyn

1: Assignment of Processes to Processors

• If a process is permanently assigned (static assignment)

to a processor from activation until completion, then a

dedicated short-term queue is maintained for each

processor.

– Allows for group or gang scheduling (details later).

– Advantage: less overhead – processor assignment occurs only once.

– Disadvantage: One processor could be idle (has an empty queue)

while another processor has a backlog. To prevent this situation

from arising, a common queue can be utilized. In this case, all

processes go into one global queue and are scheduled to any

available processor. Thus, over the life of a process, it may be

executed on several different processors at different times.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 17 © Dr. Mark Llewellyn

1: Assignment of Processes to Processors

• In a tightly coupled shared-memory architecture, the context

information for all processes will be available to all

processors, and therefore the cost of scheduling a process

will be independent of the identity of the processor on

which it is scheduled.

• Yet another option to overcome this disadvantage is

dynamic load balancing, in which threads are moved from a

queue for one processor to the queue for another processor

to balance the overall load on the various processors. Linux

uses this approach.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 18 © Dr. Mark Llewellyn

1: Assignment of Processes to Processors

• Regardless of whether processes are dedicated to processors, some
mechanism is needed to assign processes to processors.

• Two approaches have been used: master/slave and peer.

1. Master/slave architecture

– Key kernel functions always run on a particular processor. The other
processors can only execute user programs.

– Master is responsible for scheduling jobs.

– Slave sends service request to the master.

– Advantages
• Simple, requires little enhancement to a uniprocessor multiprogramming OS.

• Conflict resolution is simple since one processor has control of all memory
and I/O resources.

– Disadvantages
• Failure of the master brings down whole system

• Master can become a performance bottleneck

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 19 © Dr. Mark Llewellyn

1: Assignment of Processes to Processors

2. Peer architecture

– The OS kernel can execute on any processor.

– Each processor does self-scheduling from the pool of
available processes.

– Advantages:

• All processors are equivalent.

• No one processor should become a bottleneck in the system.

– Disadvantage:

• Complicates the operating system

• The OS must make sure that two processors do not choose the same
process and that the processes are not somehow lost from the queue.

• Techniques must be employed to resolve and synchronize competing
claims for resources.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 20 © Dr. Mark Llewellyn

2: The Use of Multiprogramming On

Individual Processors
• The second of the design issues concerns the use of multiprogramming

on the individual processors.

• When each process is statically assigned to a processor for the duration
of its lifetime, a new question arises: Should that processor be
multiprogrammed?

– In a traditional multiprocessor, which is dealing with coarse-grain or
independent synchronization granularity, it is clear that each individual
processor should be able to switch among a number of processes to
achieve high utilization and therefore better overall performance.

– However, for medium-grained application running on a multiprocessor
with many processors, the situation is less clear. When many processors
are available, it is no longer paramount that every single processor be busy
as much as possible. Rather, we are more concerned to provide the best
performance, on average, for the applications. An application that
consists of a number of threads may perform poorly unless all of its
threads are available to run simultaneously.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 21 © Dr. Mark Llewellyn

3: Process Dispatching

• The final design issue related to multiprocessor scheduling is the

actual selection of the process to run.

• Recall that on a multiprogrammed uniprocessor, the use of priorities or

sophisticated scheduling algorithms based on past usage (SRT and

HRRN) may improve performance over a FCFS protocol.

• When considering a multiprocessor environment, these complexities

may be unnecessary or even counterproductive, and a simpler

approach may be more effective with less overhead.

• In the case of thread scheduling, new issues come into play that may

be more important than priorities or execution histories.

• We examine each of these issues separately.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 22 © Dr. Mark Llewellyn

Process Scheduling

• In most traditional multiprocessor systems, processes are not
dedicated to processors. Rather there is a single queue for all
processors, or if some sort of priority scheme is used, there are
multiple queues based on priority all feeding into the common
pool of processes.

• Much research has been conducted in this area and while many
different conclusions have been determined, there is some
consensus on the conclusions:

– The specific scheduling protocol is much less important with two processors
than with one.

– The specific scheduling protocol becomes less and less important as the
overall number of processors grows.

– A simple FCFS protocol or FCFS within a static priority scheme typically
suffices for a multiprocessor system.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 23 © Dr. Mark Llewellyn

Thread Scheduling

• With threads, the concept of execution is separated from the rest of the
definition of the a process. An application can be implemented as a set
of threads, which cooperate and execute concurrently in the same
address space.

• On a uniprocessor, threads can be used as a program structuring aid to
overlap I/O with processing. Because of the minimal penalty in doing a
thread switch compared to a process switch, these benefits are realized
with little cost.

• However, the full power of threads becomes evident in a
multiprocessor system. In this environment, threads can be used to
exploit true parallelism in an application.

• If the various threads of an application are simultaneously executed on
separate processors, a dramatic gain in performance is possible.

• However, it has been shown that for applications that require
significant interaction among threads (medium-grain parallelism), small
differences in thread management and scheduling can have a significant
performance impact.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 24 © Dr. Mark Llewellyn

Multiprocessor Thread Scheduling

• Among the many proposals for multiprocessor thread

scheduling and processor assignment protocols, four

general approaches stand out:

1. Load sharing

• Processes are not assigned to a particular processor. A global queue

of ready threads is maintained, and each processor, when idle, selects

a thread from the queue. The term load sharing is used to distinguish

this strategy from load balancing schemes in which work is allocated

on a more permanent basis.

2. Gang scheduling

• A set of related threads is scheduled to run on a set of processors at

the same time, on a one-to-one basis.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 25 © Dr. Mark Llewellyn

Multiprocessor Thread Scheduling

3. Dedicated Processor Assignment

• This is the opposite of the load-sharing approach and provides

implicit scheduling defined by the assignment of threads to

processors. Each program is allocated a number of processors

equal to the number of threads in the program, for the duration

of the program’s execution. When the program terminates, the

processors return to the general pool for possible allocation to

another program.

4. Dynamic scheduling

• The number of threads in a process can be altered during the

course of execution.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 26 © Dr. Mark Llewellyn

Load Sharing

• Load sharing is perhaps the simplest approach and the one that

carries over most directly from a uni-processor environment.

• Advantages:

– The load is distributed evenly across the processors, assuring that no

processor is idle while work is available to do.

– No centralized scheduler is required; when a processor is available, the

scheduling routine of the OS is executed on that processor to select the

next thread for execution.

– The global queue can be organized and accessed using any of the

scheduling protocols we discussed for a uniprocessor environment,

including priority-based protocols.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 27 © Dr. Mark Llewellyn

Load Sharing

• Disadvantages:

– The central queue occupies a region of memory that must be accessed
in a manner that forces mutual exclusion. Thus, it may become a
bottleneck if many processors look for work at the same time. When
there is only a small number of processors, this is unlikely to be
noticeable. However, when the multiprocessor consists of dozens or
even hundreds of processors, the potential for bottleneck is real.

– Preempted threads are unlikely resume execution on the same
processor. If each processor is equipped with a local cache, caching
becomes less efficient.

– If all threads are treated as a common pool of threads, it is unlikely that
all of the threads of a program will gain access to processors at the
same time. If a high degree of coordination is required between the
threads of a program, the process switches involved may seriously
compromise performance.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 28 © Dr. Mark Llewellyn

Load Sharing

• In spite of the disadvantages, load sharing is one of the most commonly
used schemes in current multiprocessors.

• There are three common variants of load sharing that may be used:

1. FCFS (First Come First Served) – When a job arrives, each of its threads is
placed consecutively at the end of the shared queue. When a processor
becomes idle, it picks the next ready thread, which it executes until
completion or it becomes blocked. Many simulations indicate this method is
superior to the following two.

2. SNTF (Smallest Number of Threads First) – The shared ready queue is
organized as a priority queue, with highest priority given to threads from
jobs with the smallest number of unscheduled threads. Jobs of equal priority
are ordered according to which job arrived first (FCFS). As with FCFS, a
scheduled thread is run to completion or blocking.

3. PSNTF (Preemptive Smallest Number of Threads First) – Highest priority is
given to jobs with the smallest number of unscheduled threads. An arriving
job with a smaller number of threads than an executing job will preempt
threads belonging to the scheduled job.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 29 © Dr. Mark Llewellyn

Gang Scheduling

• Gang scheduling (also referred to as group scheduling) is the simultaneous
scheduling of all of the threads that make up a single process.

• Gang scheduling attempts to achieve the following benefits:

– If closely related processes execute in parallel, synchronization blocking may
be reduced, less process switching may be necessary, and performance will
increase.

– Scheduling overhead may be reduced because a single decision affects a
number of processors and processes at one time.

• Gang scheduling is useful for medium or fine-grain parallel applications
where performance severely degrades when any part of the application is
not running while other parts are ready to run.

• It is also beneficial to any parallel application, even one that is not quite so
performance sensitive.

• Threads often need to synchronize with each other

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 30 © Dr. Mark Llewellyn

Gang Scheduling
• One obvious way in which gang scheduling improves the

performance of a single application is that process switches are
minimized.

– Suppose one thread of a process is executing and reaches a point at
which it must synchronize with another thread of the same process. If
that other thread is not running, but is in a ready queue, the first thread
is hung up until a process switch can be done on some other processor
to bring in the needed thread.

• In an application with tight coordination among threads, such
switches will dramatically reduce performance.

• The simultaneous scheduling of cooperating threads can also
save time in resource allocation.

– For example, multiple gang-scheduled threads can access a file without
the additional overhead of locking during a seek or read/write
operation.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 31 © Dr. Mark Llewellyn

Gang Scheduling
• The use of gang scheduling creates the requirement for

processor allocation.

• One possibility is the uniform allocation of time:

– Suppose we have N processors and M applications, each of which has
N or fewer threads. Then each application could be given 1/M of the
available time on the N processors, using time slicing.

• The problem with this simple strategy is that it can be
inefficient.

– For example, suppose we have two applications, one with four threads
and one with one thread. With four processors, the four threaded
application keeps all four processors busy, but when the single threaded
application is executed 3 of the 4 processors are idle. Uniform time
allocation wastes 37.5% of the processing resource (3/8 of the total
processing time is wasted). (See diagram on page 33.)

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 32 © Dr. Mark Llewellyn

Gang Scheduling
• If there are several single-threaded applications, these could be

ganged together to increase processor utilization.

• If that option is not available, an alternative to uniform time

allocation is scheduling that is weighted by the number of

threads.

• In the previous example, the four-threaded application would

be allocated 4/5 of the time and the one-threaded application

would be allocated 1/5 of the time. This would reduce

processor waste to 15% (since 4/5 of the time all processors

are busy and only 1/5 of the time are 3 processors idle). (See

diagram on next page.)

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 33 © Dr. Mark Llewellyn

Scheduling Groups

The 4-threaded

application is assigned

as Group1

The single-threaded

application is assigned

as Group2

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 34 © Dr. Mark Llewellyn

Dedicated Processor Assignment

• An extreme form of gang scheduling, is to dedicate a group of

processors to an application for the duration of the application.

That is to say, when application is scheduled, its threads are

assigned to a processor that remains dedicated to that thread until

the application runs to completion.

• At first glance, this approach would appear to be extremely

wasteful of processor time.

– If a thread of an application is blocked waiting for I/O or for

synchronization with another thread, then that thread’s processor remains

idle.

– There is no multiprogramming of processors. If a thread of an application

is blocked waiting for I/O or for synchronization with another thread, then

that thread’s processor remains idle.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 35 © Dr. Mark Llewellyn

Dedicated Processor Assignment

• There are two observations regarding this extreme strategy that

indicate better than expected performance:

1. In a highly parallel system, with tens or hundreds of

processors, each of which represents a small fraction of the

cost of the system, processor utilization is no longer an

extremely important metric for effectiveness or

performance.

2. Total avoidance of process switching during the lifetime of a

program should result in a substantial speedup of that

program.

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 36 © Dr. Mark Llewellyn

Dedicated Processor Assignment

Test results for

multiprocessor

system with 16

processors

Speedup drops off

when number of

threads exceeds

number of

processors

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 37 © Dr. Mark Llewellyn

Dynamic Scheduling
• For some applications, it is possible to provide language and system

tools that permit the number of threads in the process to be altered
dynamically.

• This allows the OS to adjust the load to improve utilization.

• In this technique the OS and the application cooperate in making
scheduling decisions.

• The OS is responsible for partitioning the processors among the
various jobs.

• Each job uses the processors currently in its partition to execute
some subset of its runnable tasks by mapping these tasks to threads.

• An appropriate decision about which subset to run as well as which
thread to suspend when a process is preempted, is left to the
individual applications (probably through a set of run-time library
routines).

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 38 © Dr. Mark Llewellyn

Dynamic Scheduling

• This approach may not be suitable for all applications.
However, some applications could default to a single thread
while others could be programmed to take advantage of this
particular feature of the OS.

• Analysis has shown that for applications that can take
advantage of dynamic scheduling, the approach is superior
to gang scheduling or dedicated processor assignment.

• However, the overhead of this approach may negate this
apparent performance advantage.

• In this approach, the scheduling responsibility of the OS is
primarily limited to processor allocations and proceeds
according to the following protocol:

COP 4600: Intro To OS (Multiprocessor Scheduling) Page 39 © Dr. Mark Llewellyn

Dynamic Scheduling
• When a job requests one or more processors (either when

the job arrives for the first time or because its requirements
change),

1. If there are idle processors, use them to satisfy the request.

2. Otherwise, if the job making the request is a new arrival, allocate it a
single processor by taking one away from any job currently allocated
more than one processor.

3. If any portion of the request cannot be satisfied, it remains outstanding
until either a processor becomes available for it or the job rescinds the
request (e.g., there is no longer a need for the extra processors).

Upon release of one or more processors (including job departure),

4. Scan the current queue of unsatisfied requests for processors. Assign a
single processor to each job in the list that currently has no processors
(i.e., to all waiting new arrivals). Then scan the list again, allocating the
remaining processors on a FCFS basis.

